The University of Kentucky has received $2.4 million in funding from the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) to develop a cost-effective system that will capture carbon dioxide (CO2) and produce hydrogen at natural gas combined cycle (NGCC) power plants.
Partnering with the Center for Applied Energy Research (CAER) on the project is the UK College of Engineering’s Department of Mechanical Engineering, Electric Power Research Institute (EPRI), ALL4 and Louisville Gas and Electric Company and Kentucky Utilities Company (LG&E and KU) — part of the PPL Corporation family of companies. The project (DE-FE0032134) is titled “Dual-loop Solution-based CO2 Capture System for Net Negative CO2 Emissions with Lower Costs.”
Building on a seed grant received from LG&E and KU in 2021, UK researchers will design, retrofit and research a dual solvent CO2 capture system on CAER’s existing 0.1 MWthermal bench-scale facility using natural gas-derived flue gas.
One of the unique technical challenges facing the research team, according to principal investigator Heather Nikolic, is capturing nearly all of the CO2 from a low-concentration point source, such as natural gas-derived flue gas.
“Natural gas combined cycle systems have a CO2 concentration of ~ 4 vol% as well as high oxygen concentrations,” said Nikolic, program manager at CAER. “Creating a system that can capture 99.8+% of the CO2 means that the flue gas being emitted from this system will have less CO2 than currently exists in the atmosphere, making it a negative emissions technology. Producing pure hydrogen while electrochemically regenerating a portion of the capture solvent helps offset the overall cost. We know this is all possible, and we are excited to learn more alongside our collaborative research team.”